Water-Repellent vs Water-Resistant vs Waterproof Fabrics: the Differences Explained

Camotrek is reader-supported. When you buy through links on our site, we may earn an affiliate commission. See the disclosure page for more information.

If you’ve ever wondered what’s the difference between water-resistant and water-repellent or between water-repellent and waterproof or between water-resistant and waterproof textiles and clothing, you’ve come to the right place.

The main function of outdoor clothing is to provide protection against environmental factors. In a wet environment, the basic requirement for clothing is to keep the wearer dry. Therefore, the outer layer of your clothing, as well as your gloves or mitts, need to resist moisture. But what are the main terms regarding this? What do they really mean? Is there any difference between them? If so, what’s the difference? Here, we’ll try to answer these and many other questions regarding water-repellent, water-resistant, and waterproof fabrics and clothing.

In contact with water, water-repellent materials form beads on the outside that can be easily removed from the fabric surface. This means that water can’t easily penetrate the material; however, for longer contact with water or with a higher pressure difference, the material will absorb water. Water-repellent fabrics are often compact textile structures or common materials treated with hydrophobic chemicals. Although water-resistant and water-repellent are often used interchangeably, there’s a difference as water-resistant fabrics will resist wetting by water for longer. Waterproofing of a material is defined as the property of a material not to be penetrated by fluids, i.e. a waterproof material must be impervious to water.

There are two methods for measuring the waterproofness of fabric. The first one simulates rain, whereas the other subjects the fabric to hydrostatic pressure. The minimum value for the hydrostatic pressure without leaking at its surface, at which fabric is considered rainproof is 5000 mm water column, while for waterproof materials the hydrostatic pressure can reach 10,000-15,000 mm water column. This means that if a water column was put over a small point, a piece of said fabric, it needs to reach 10-15 meters before water starts to leak through the fabric. The waterproof rating of materials designed for harsh conditions is usually between 15,000 and 30,000 mm water column. Such fabrics are completely waterproof and won’t leak even under a downpour.

Table 1: Fabric waterproof ratings

Fabric waterproof ratings table

Source: evo.com

The main problem when using waterproof fabrics for garments is the comfort of the wearer. In the past, waterproof technologies relied mainly on covering and blocking the pores of the textile substratum. This way, the material acts as a barrier between the body and the humidity in the environment. The problem is that this can restrict perspiration from escaping away from the body. This leads to an accumulation of moisture inside the clothing, condensation, and as a result – a sharp decrease in the insulative ability of the garment. Therefore, the transfer of humidity must be analyzed in both directions from and towards the body.

Human skin sweats continuously, both at rest (insensible perspiration) and during activity (sensible perspiration). Therefore, the humidity produced through perspiration must be eliminated somehow. This problem is solved by the production of waterproof breathable textiles. They allow evaporating moisture to escape through the fabric. This reduces overheating and perspiration buildup and leads to more comfortable and drier skin.

Hiker with waterproof jacket in the mountains

Water-repellent vs water-resistant vs waterproof: history

First attempts

First written attempts to obtain water-repellent protective clothing are from the 15th century. At that time, sailors tried to impregnate their clothing with linseed oil, animal fat or wax. We can’t say if these attempts were successful or not. However, the first patented waterproof fabric was produced roughly 400 years later in England by Charles Macintosh who patented it in 1823. While this process would be improved over time, the product he got was far superior to any other similar product on the market.

Rubber vulcanization and the first waterproof fabric for coats

By sandwiching a layer of liquid rubber (made with an oily liquid by-product of tar called naphtha) between two woven fabrics, Macintosh created a new material that would be resistant to water while also remaining flexible and wearable. Resistant to rainy weather and wet conditions, the new fabric was perfect for making coats. However, there were some problems with this fabric caused by the use of an unstable rubber. The problems were eliminated when a more stable textile material was produced thanks to the process of rubber vulcanization patented in November 1843 by Thomas Hancock in England and 8 weeks later by Charles Goodyear in the United States.

Despite the fact that rubber is a good material for waterproofing, there is a significant problem using rubberized textile fabrics for producing waterproof clothes. The downside of these garments is that they present a barrier to the evaporation of sweat and the very limited water vapor transfer leads to overheating of the wearer’s body. This way, sweat vapors condense in contact with the interior surface of the clothing and accumulate in the textile layers in direct contact with the skin. The result is a wearer who’s wet with perspiration and highly uncomfortable. Thus, as far as the wearer’s comfort is concerned, having a waterproof fabric is just half of the solution. The other half is called breathability or air permeability. Combining these two, the first waterproof breathable fabric was produced.

First modern waterproof/water-resistant breathable fabric

The first real water-resistant or waterproof breathable fabric was produced in England during WW2 (the mass production started in 1943). A densely woven breathable fabric, Ventile, is made from 100% cotton, utilizing quality long staple fibers. It was meant to replace flax in garments for military applications. So, how does this fabric function? When the fabric comes into contact with water, the cotton fibers swell, the size of the pores between the yarns decreases, and the interstices within the fabric close up, preventing the further passage of water. Moreover, the fabric is treated with a DWR (durable water repellent), which enhances the water-resistance properties of the material further. Ventile is now used for outdoor sportswear such as mountaineering, trekking, and nature watching because the fabric provides excellent protection against the wind, rain, snow, and cold. Moreover, Ventile is suitable for use in extreme and hostile environments. For example, it’s used on Arctic, Antarctic, and Himalayan expeditions. It seems that cotton doesn’t always kill…

Gore-Tex and the rise of the waterproof breathable membranes

The first microporous membrane ePTFE (expanded polytetrafluoroethylene) was created by Wilbert L. Gore and his son Robert W. Gore. In 1969, thanks to a happy accident (instead of slowly stretching the heated PTFE rod, he applied a sudden yank and it stretched 800%), Robert Gore created the new material. The first Gore-Tex materials appeared on the market in 1976, starting a revolution in the concept of waterproof breathable clothing. This membrane has approximately 1.4 billion pores per square cm (9 billion pores per square inch), with each pore 20,000 times smaller than a drop of water. The waterproof, breathable, microporous membrane introduced by Gore has an important place in the performance sportswear market.

Since the mass production of waterproof clothes with Gore-Tex material started some 50 years ago, there have been many developments in the so-called waterproof breathable fabrics.

Water-repellent textiles are obtained using specific finishing hydrophobic treatments. Thanks to the impregnation with these hydrophobic treatments, water repellency offers light rain resistance.

Waterproof and water-repellent textile

Droplets can bead on all kinds of water-resistant fabrics

The most frequent use of such fabrics is in the clothing industry. Due to the complex requirements of the users (protection, comfort, functionality, etc.), waterproof fabrics must have a sum of properties that ensure the multifunctional characteristics of the garment. The level of performance of the waterproof and water-repellent materials used for clothing is determined by two groups of factors:

  • Subjective variables related to the requirements and the level of comfort of the final user.
  • Objective variables related to the environmental conditions, risk factors and specifics of the activities carried out by the user.

Waterproofness is a requirement imposed mainly by the environment (especially by weather conditions) and is related to the behavior of textile materials toward the water. Generally, textile materials can be divided into:

  • Materials that absorb and retain water. They’re called hydrophilic materials.
  • Materials that repel water. They’re called hydrophobic materials.

Waterproof fabrics

If you need to stay completely dry in driving rain or snow, your best option is to wear a properly designed garment made from waterproof breathable fabric with watertight zippers, sealed seams, and virtually no openings through which water can penetrate.

Conventional waterproofing treatments work the following way: by covering the pores with a layer of polymer or a membrane (the water-repellent finish should not affect breathability), fluids cannot pass through textile materials.

Considering the structure of the waterproof materials and/or the technology used, they are either:

  • Inherent waterproof materials; or
  • Textile materials with waterproofing finishing treatments.

Waterproof materials are generally obtained using surface finishing treatments. Covering is a general term referring to the application of one or more layers of adherent polymeric products on one or both sides of a textile material. This way, a film of polymeric material is formed on the surface of the textile.

There are two technologies used:

  • Coating technology, where the polymer is applied by direct layering and impregnation. The polymer is usually in the form of a paste or a high viscosity liquid. Such coatings are extremely thin – in the range of 10-100μm.
  • Laminating technology that involves the formation of a laminating layer (membrane or foam) on the surface/surfaces of the textile material. The membrane is very thin (e.g. around 10μm for PTFE) so the final thickness of the film remains in the range of 10-100μm.


During impregnation, a solution or a low- or high-viscosity dispersion polymer is deposited uniformly on the entire textile surface using different processes. A general characteristic of the impregnated materials is that the components cannot be clearly separated because the polymer is dispersed among the structural elements of the textile surface. The finishing technology can cover either one side of the material or both sides of the material (this is called total impregnation). Nowadays, the most widely used coating substrate (textile) is polyester because of its dimensional stability, shrink resistance and relatively low price.


Laminated waterproof materials are multicomponent products (two or more layers, one of which is the textile fabric) requiring bonding by the use of:

  • a special adhesive added to the polymer (solutions in organic solvents, powders, granules, fibers); and
  • the adhesive properties of one or more component layers (membranes, foams, expanded foils).

Natural (only rubber) and synthetic polymers are suitable for laminating textiles. Although the range of synthetic polymers is relatively wide, 90% of the synthetic polymers used for laminating textile materials are polyurethanes.

The morphological structure of the coated and laminated materials and the nature of the polymers are important, as they are key factors in obtaining a perfectly sealed waterproof product. The morphological structure of these materials includes:

  1. The number of layers that make the coated or laminated waterproof material and their relative position in the garment.
  2. The absence or the presence of pores (compact or porous layer) and the absence or the presence of other added substances.
  3. The structure of the textile substratum; woven, knitted or nonwoven fabrics that can have different finishing treatments.

Considering their position in the garment, the coated or laminated waterproof materials can be:

  • With the covering layer towards the exterior – mainly materials covered with elastomers and some materials laminated with compact foils. These materials are recommended for chemical protection and protection against particles.
  • With the covering layer towards the interior. Used mainly for laminated materials with a membrane or film with low mechanical strength. For increased durability, the polymeric film is covered with a hydrophilic polyurethane (PU) layer and/or thin textile fabric. These materials are for wet weather protection.

Gore’s expanded PTFE membrane is often regarded as the starting point of commercially available high-performance waterproof breathable membranes. Initially, an ePTFE membrane claiming 90% void volume was laminated to a support fabric, however, the pores became contaminated by sweat or detergents thus reducing the overall waterproofness. To overcome this drawback, a thin hydrophilic polyurethane coating was applied to the body side of the membrane to prevent contamination (known as 2nd generation Gore-Tex).

Gore-Tex comparison between old and new

Here you see a comparison between the old and the new version of GORE-TEX Pro. On top is the face fabric in red color, in gray/white is the ePTFE membrane, and the grey strands just below the membrane depict the lining. In the new version, the white PU layer has been replaced by the thin gray ePTFE “sandwich”.

Source: evo.com

Water-repellent fabrics

Water-repellent textiles usually resist wetting when worn in intermittent rain but do not provide adequate protection against driving rain. Unlike waterproof fabrics, water-repellent textiles have open pores making them permeable to air, water vapor, and liquid water (at high hydrostatic pressure). In order to obtain a water-repellent fabric, a hydrophobic material is applied to the fiber surface. As a result of this procedure, the fabric remains porous allowing air and water vapor to pass through. A downside is that in extreme weather conditions the fabric leaks.

The advantage of hydrophobic textiles is enhanced breathability, however, they offer less protection against water. Water-repellent fabrics are used mainly in the production of conventional clothing or as an exterior layer of waterproof clothing. The hydrophobicity can be either permanent (due to the application of water repellents, DWR) or temporary.

There are two groups of water-repellent textiles:

  1. Inherent water-repellent textile materials.
  2. Textile materials finished with water repellant.

Water repellency is specific to compact textile structures. Thus, inherent water-repellent materials are (a) high-density woven fabrics, made of very fine yarns and filaments and (b) nonwoven materials.

Droplets on water-repellent fabric

The invention of water-resistant breathable fabrics was welcomed by outdoor lovers from all over the world

The hydrophobization of the textile materials is achieved by using different chemicals. These substances orient their hydrophobic groups towards the textile fibers thus forming a protective brush against water. The water hydrophobization agent applied on the surface of the garment allows the water drops to maintain their shape without spreading onto the fibers. In general, the main limitations of the water-repellent treatments refer to the extended surface porosity.

Hydrophobization can be achieved through the use of several technologies and/or materials. The main types are the following:

  1. Hydrophobization with additives (aluminum organic salts, aluminum soaps, paraffin emulsions with aluminum salts).
  2. Hydrophobization with resin-type reactive agents.
  3. Hydrophobization through chemical modification of the fibers.
  4. Textile finishing with nanoparticles. Oleophobization techniques give textile materials the property of repelling oils and thus create protection against dirt and smudges while increasing the hydrophobization effect. Fluorocarbon resins are often used as oleophobization agents.
  5. Plasma treatment of the textile materials, plasma polymerization or plasma depositing of organic-silicone polymers can give a hydrophobic character to materials that are typically not hydrophobic (like cotton, for example).

The traditional technology used for producing water-repellent textiles requires a huge amount of water. This is related to two problems: 1) water pollution, and 2) high energy consumption. In contrast, plasma treatment does not require these large volumes of water or wet chemicals, or a large amount of energy required to dry the fabric.

Textile materials are valuable thanks to properties like strength, flexibility, low weight, etc. Moreover, other properties adding more functionality such as hydrophobicity, oleophobicity, or antibacterial activity further increase their value. However, few textiles are inherently water-repellent and none are oil-repellent. Traditionally, the water repellency of textiles is achieved by the application of functional chemicals, followed by careful drying. Some of these chemicals include metal salts, pyridinium-based finishes, silicone finishes, and fluorocarbon. Among them, only fluorocarbon finishes can repel both oil and water.

Water-resistant fabrics

The term “water resistance” describes the degree by which water droplets are able to wet and penetrate a fabric. Some people use the terms water-resistant and water-repellent interchangeably, while others argue that water-resistant and waterproof are the same. Actually, rain-resistant fabrics also known as water-resistant are in-between water-repellent and waterproof textiles. Water-resistant fabrics and clothes are supposed to keep you dry in moderate to heavy rain. So they provide better protection against rain and snow than water-repellent textiles. However, in prolonged wet weather, garments made of water-resistant textiles cannot protect you for too long as they will eventually allow water to leak through. In bad weather, this makes them less reliable than waterproof breathable clothes and gear (which are resistant to higher hydrostatic pressure).

If we compare the three types of water-shedding fabrics, water-resistant textiles are much more similar to waterproof than to water-repellent fabrics as, unlike the latter, they can repel moisture even without being treated with a hydrophobic finish. This means that water resistance implies an inherent ability of a fabric to ward off water. The degree of water resistance is measured by using a hydrostatic pressure test so, technically, waterproof textiles are water-resistant as well (note that the opposite isn’t always true). Rain-resistant fabrics should be able to withstand hydrostatic pressure of at least 1500 mm water column.

Rain-resistant clothes are often made from tightly woven man-made fabrics such as (ripstop) polyester and nylon. Other densely woven fabrics such as taffeta and even cotton are also readily used for manufacturing water-resistant clothing and gear.


The table below illustrates the main features of water-repellent, waterproof, and waterproof breathable fabrics.

The main advantage of water-repellent textiles is their inherent breathability. This makes them suitable for manufacturing outdoor clothing that ensures comfort to the wearer. Additionally, they are cheaper than waterproof and waterproof breathable fabrics.

Waterproof fabrics are more resistant to wetting than water-repellent textiles and cheaper than waterproof breathable fabrics; however, these are their only advantages. Apparently, they have many more disadvantages in comparison to the other two materials. For this reason, they have been replaced by waterproof breathable fabrics in the production of outdoor clothing.

Waterproof breathable materials are expected to oppose the passing of water and air while ensuring the wearer’s comfort even during activities in extreme weather conditions. Thus the waterproof breathable materials are waterproof, windproof, and relatively breathable. Their biggest disadvantage is the higher price.

Table 2: Features of waterproof, waterproof breathable, and water-repellent materials


Source: Waterproof and Water Repellent Textiles and Clothing


Below, you can see and compare some popular outdoor jackets with various levels of water resistance varying from water-repellent to rainproof to fully waterproof (from left to right, with a waterproof rating if available).

KUHL The One Hoody Black Diamond StormLine Stretch Rain Shell Patagonia Storm10 Helly Hansen Odin Mountain Infinity


KUHL The One Hoody  |  Black Diamond StormLine  (10K) |  Patagonia Storm10 (20K)  |  HH Odin Mountain Infinity (above 20K)

While the level of water resistance of the jackets above varies, each one of them combines a multitude of other useful features.

Applications of waterproof, water-resistant, and water-repellent textiles

Waterproof, water-resistant, and water-repellent fabrics are quite popular for manufacturing outdoor and indoor products. Unsurprisingly, the main use of such textiles is for clothing and gear (boots, backpacks, shelters and tents, sleeping bag covers, umbrellas, fasteners, ponchos) for outdoor activities like hiking, backpacking, winter sports, etc. They are also used for products used at home such as bed covers, bed sheets, pillow protectors, covers for garden chairs and tables, pet blankets, etc.

Helly Hansen Seven J JacketWant a lightweight shell jacket to protect you against the elements while living an active life? Then, look for a versatile rain jacket with attractive features.

Designed to provide a dry and comfortable outdoor experience, the Helly Hansen Seven J Jacket is a great all-around rain jacket that offers good water and wind protection on and off the trail. It’s stylish and looks great but more importantly – it’s well-made, easy to pack, and can be used as both a rain jacket and a windbreaker during hiking excursions, fishing trips, and other outdoor activities. It functions best in warmer weather but the cut fits well even when wearing additional layers underneath for more warmth in winter.

See the Men’s Seven J Jacket on Amazon See the Women’s Seven J Jacket on Amazon

Waterproof, water-repellent, and water-resistant textiles are used in agriculture, architecture and construction, medicine and healthcare, and various industries. Wheelchair cushions, bed stretchers, surgical garments, multilayer wound dressings, tree shelters, textile membranes for roofs, car covers, and protective clothing are just a small part of all the applications of waterproof and water-repellent fabrics. See our article on waterproof breathable fabrics for a comprehensive list of applications.

Waterproof fabrics application: umbrella

Hiking with an umbrella can be fun no matter where you are


In addition to protection from weather conditions like rain and wind, breathability is expected from sportswear. That’s why water-repellent or waterproof/water-resistant breathable fabrics are preferred.

Water-repellent fabrics are coated with a finish (such as DWR) that is resistant but not impervious to penetration by water so water-repellent clothes will keep you dry for a relatively short time when walking in the rain. Thus water-repellent clothes will provide some protection against intermittent rain but are not suitable to be worn in a downpour or in prolonged rainy weather. The biggest advantage of water-repellent pants and jackets is their breathability combined with some degree of water resistance.

Waterproof breathable fabrics are impervious to water and provide moisture vapor transfer from the inner side to the outer side of the material. They prevent the penetration and absorption of liquid water from the outside while allowing water vapor to be transmitted to the outside of the fabric. Waterproof breathable fabrics try to tackle the paradox of protection versus comfort. To some extent, they are doing well as waterproof breathable textiles provide good protection and better thermal comfort in a cold and wet environment.

Functional clothing and moisture management principles have gained more and more popularity among people of all ages and occupations in the last 30-40 years. Thus, companies and researchers have had an incentive to develop the technology for manufacturing waterproof and water-repellent fabrics further. Well, the technology is still far from perfect, but it’s getting better.

Do you often use rain gear? If so, what type of gear do you prefer: water-repellent, waterproof or water-resistant? Drop us a line in the comments section below.


Related Articles

All About Waterproof Breathable Fabrics

Guide to Waterproof Breathable Clothes

Ultimate Guide to Hiking Clothing

Best Rain Ponchos

Hiking in the Rain

Best Hardshell Jackets

Best Hardshell Pants

Rain Pants FAQs


Like this post? PIN ME!!

Waterproof vs water-repellent vs water-resistant fabrics

2 thoughts on “Water-Repellent vs Water-Resistant vs Waterproof Fabrics: the Differences Explained”

    • Hi,
      Waterproof breathable or rain jackets are usually laminates that have 2, 2.5 or 3 bonded layers. So when you hear or read about a 3-layer jacket it is a waterproof breathable jacket. Generally, such construction consists of:
      1) durable face fabric treated with a water-repellent finish
      2) waterproof breathable membrane
      3) lining
      Waterproof jackets work best for wet conditions/changing weather. If rain is expected, a waterproof jacket is a good choice. Fully waterproof jackets can keep you dry for hours. We have a fantastic article about waterproof breathable clothing where we delve deeply into this (https://camotrek.com/blogs/news/waterproof-breathable-clothes/)
      On the other hand, wind stoppers work best for windy weather. They are simpler constructions than rain jackets. Wind stoppers are often only water-repellent (not waterproof) thanks to a DWR-treatment and are more breathable than waterproof jackets. This makes them preferred for dry weather or when you expect only light rain so that your garment doesn’t soak with water. Thus wind stoppers are more versatile than waterproof breathable jackets but really both have their merits.


Leave a Comment